

Building a Database of Developmental Neurotoxicants: Evidence from Human and Animal Studies

W. Mundy¹, S. Padilla¹, T. Shafer¹, M. Gilbert¹, J. Breier^{1,2}, J. Cowden¹, K. Crofton¹, D. Herr¹, K. Jensen¹, K. Raffaele³, N. Radio⁴, and K. Schumacher⁵. ¹Neurotoxicology Div. U.S. EPA, RTP, NC 27711; ²Curriculum in Toxicology, Univ. of N.C. at Chapel Hill, Chapel Hill, NC, 27514; ³ NCEA/ORD, U.S. EPA, Washington, DC, 20460; ⁴Cellumen, Inc., Pittsburgh, PA. 15238; ⁵U.S. EPA, Region 7, Kansas City, KS, 66101.

Introduction

EPA's program for the screening and prioritization of chemicals for developmental neurotoxicity makes it essential to assemble a list of chemicals that are toxic to the developing mammalian nervous system. Listed chemicals will be used to evaluate the sensitivity, reliability, and predictive power of alternative developmental neurotoxicity assays. To establish this list, a literature review was conducted for over 400 compounds that have been suggested to be developmental neurotoxicants, neurotoxicants, or developmental toxicants. Compounds were assigned one of three groups based on the strength of the evidence for developmental neurotoxicity:

(1) no evidence: either there were no reports that met our criteria for evidence, or there were reports which showed no developmental neurotoxicity:

(2) minimal evidence: one report only or multiple reports from only one laboratory;

(3) substantial evidence: reports from more than one laboratory.

The chemicals in the latter group will be especially useful for vetting protocols that have been proposed as screens for developmental neurotoxicity.

This presentation has been reviewed by the National Health and Environmental Effects Research Laboratory and approved. Approval does not signify that the contents reflect the views of the Agency

Approach

Collect lists of putative DNT chemicals (n≈400)

 Consult EPA RED* documents Consult Literature

Assess Documentation Discuss Level of DNT Evidence Prepare Manuscript

Each chemical was assigned to one of three categories:

- 1. No available evidence existed: exclude from manuscript.
- 2. Minimal evidence existed: put in table in manuscript.
- 3. Substantial evidence existed: write a descriptive paragraph for manuscript.

*Registration Eligibility Decision Documents (available online or via Freedom of Information Act)

Evidence:	Criteria for	Assessment and	Endpoints
-----------	--------------	----------------	-----------

- We included only mammalian studies
- -no in vitro studies were included.
- b) We included only studies with the pure chemical (or reasonably so). -no mixture studies were included.
- -no human studies were included wherein there was exposure to more than one compound
- -no formulations were included
- c) We included only studies where the exposure took place during pregnancy or during the period before weaning.
- We included only studies in which the administered dose was below 5 grams/kg.
- Where knowledge was available, we considered only studies where the e)
- administered dose would not be lethal to the offspring.
- We did not include any case reports.
- In studies where the chemical was administered during gestation, to the extent a) possible, we looked for a litter-based statistical design
- h) If only acute pharmacological effects were reported (either during dosing or shortly thereafter), we did not include that study.

Endpoints assessed included, but were not limited to:

- Head Circumference
- Brain Weight
- Exencephalv
- Brain Morphology
- Motor Activity

1

Ami

- Learning and Memory
- Startle Response Righting Reflex Neurochemical Levels

Negative Geotaxis

Grip Strength

Receptor Affinity/Number

Chemicals with Minimal Evidence of Developmental Neurotoxicity (n≈100)

1,1,1-Trichloroethane	Diaminotoluene (2,5-)	
Abamectin	Dichloromethane (methylene chloride)	
Acephate	Dichlorvos (DDVP)	
Acetamiprid	Dicrotophos	
ActinomycinD	Difluoromethylornithine	
micarbazone (MKH 3586)	Dimethoate	
Astemizole	Dinoseb	
Atorvastatin	Diphenhydramine	
Atrazine	Disulfoton	
Azinphos methyl	Emamectin	
BAS 510 (Boscalid)	Endosulphan	
BAS 670H	Endrin	
Bifenthrin	EPTC (S-Ethyl dipropylthiocarbamate)	
Bismuth Ribromophenate	Ergotamine	
Brominated veg oil	Ethoxyethanol (2-)	
Busulfan	Ethylene dibromide	
Carbofuran	Ethylene oxide	
Carbon disulfide	Etofenprox	
Chlordane	Fenamiphos	
Chlordimeform	Fenitrothion	
Chlorfenapyr	Fenvalerate	
Chlorite, sodium	FK 33-824 (Synthetic enkephalin)	
CI-943 (Antipsychotic)	Flufenacet (thiafluamide)	1
Clodinafop-propargyl	Formaldehyde	
Clothianidin	Glufosinate ammonium	
Coumaphos	Glyphosate trimesium	
Cyfluthrin	Hexachoroplatinate (Na)	
Cyhalothrin	Imidacloprid	Trie
Cymoxanil	Ivermectin	
Danazol	Lasofoxifene	
DDT	Levo-alpha-acetylmethadol	
Dextromoramide		

Mancozeb Maytansine Methamidaphos Methyl Ethyl Keto MNDA Molinate Naled n-Hexane Nickel carbony Perchlorate Phorate (BAS 225 I Picrotoxin Primidone Profenofo Prothioconazole Selenium compounds Simvastatin Spirodiclofen Succamir Terbufos ert-Butylhydroguinone, 2 Tetrachloethylene Tetracycline Thiamethoxam Tribufos (DEF) thylene alvcol dimethy Trimethadone Triphenyl phosphate VM-26 (Teniposide) VP-16-213 (Etoposide)

Lidocaine

Malathion

Chemicals with Substantial Evidence of Developmental Neurotoxicity (n≈100)

2-Ethoxyethyl Acetate	Diazonam	Naltroxono
2-Ethoxyethyl Acetate	Diazepaini Cutoping Arghingside	Natirexone
Acidemide	Cytosine Arabinoside	Nicotine Methowyetherel 2
Acrylamide	DEET	Methoxyethanol, 2-
Aldicarb	Deitamethrin	wetnylazoxymethanol
Allethrin	Diazinon	Methylmercury
Aluminum (cl or lactate)	Dieldrin	Ozone
Amino-nicotinamide(6-)	Diethylstilbestrol	Paraquat
Aminopterin	Diphenylhydantoin	Parathion (ethyl)
Amphetamine(d-)	Epidermal Growth Factor	PBDEs
Arsenic	Ethanol	PCBs (generic)
Aspartame	Ethylene thiourea	Penicillamine
Azacytidine(5-)	Flourouracil(5-)	Permethrin
Benomyl	Fluazinam	Phenylacetate
Benzene	Fluoride	Phenylalanine (d,l)
Bioallethrin	Griseofulvin	Phthalate, di-(2-ethylhexy
Bis(tri-n-butyltin)oxide	Haloperiodol	Propylthiouracil
Bisphenol A	Halothane	Retinoids/vit.A/isotretinoi
Bromodeoxyuridine(5-)	Heptachlor	Salicylate
Butylated Hydroxy Anisol	Hexachlorobenzene	Tebuconazole
Butylated hydroxytoluene	Hexachlorophene	Tellurium (salts)
Cadmium	Hydroxyurea	Terbutaline
Caffeine	Imminodiproprionitrile (IDPN)	Thalidomide
Carbamazepine	Ketamine	THC
Carbaryl	Lead	Toluene
Carbon monoxide	Lindane	Triamcinolone
Chlordecone	LSD	Tributyltin chloride
Chlordiazepoxide	Maneb	Trichlorfon
Chlorine dioxide	Medroxyprogesterone	Trichloroethylene
Chlorpromazine	Mepiyacaine	Triethyllead
Chlorpyrifos	Methadone	Triethyltin
Cocaine	Methanol	Trimethyltin
Colcemid	Methimazole	Trypan blue
Colchicine	Methylparathion	Urethane
Cypermethrin	Monosodium Glutamate	Valproate
Dexamethasone	MPTP	Vincristine
Diamamphina hudroablarida	Nelevene	

Dexamethasone is synthetic member of the glucocorticoid class of steroid hormones. It is used to treat inflammation and autoimmune conditions (e.g., rheumatoid arthritis), and to counteract side effects of chemotherapy in cancer patients. Synthetic glucocorticoids, including dexamethasone, are also administered to women at risk for preterm labor to advance fetal maturation and reduce neonatal morbidity and mortality.

Numerous studies in animals have shown neurodevelopmental effects of perinatal dexamethasone treatment in rodents. Doses of 0.2 - 3 mg/kg (which encompasses the therapeutic range in humans) given to the pregnant dam during gestation or to the offspring postnatally alter neurogenesis and differentiation (Bohn, 1984; Carlos et al., 1992), decrease brain size and brain weight (DeKoskey et al., 1982; Carlos et al., 1992; Ferguson and Holson, 1999), and alter locomotor activity and learning and memory behavior (DeKoskey et al., 1982; Vicedomini et al., 1986; Ferguson et al., 2001; Kreider et al., 2005a). Relatively low doses (0.05 - 0.2 mg/kg) have also been shown to result in long-lasting changes in neurotransmitter systems and intracellular signaling (Kreider et al., 2005b; Kreider et al., 2006; Slotkin et al., 2006). Effects of dexamethasone, including decreased brain weight and hippocampal damage, have also been observed in nonhuman primates (reviewed in Coe and Lubach, 2005)

Human developmental neurotoxicity is associated with perinatal exposure to dexamethasone. Prenatal dexamethasone is routinely administered to mothers at risk for preterm delivery to reduce mortality and the incidence of respiratory distress syndrome and intraventricular hemorage in premature infants. Postnatal dexamethasone treatment in preterm infants is also used to reduce the risk and severity of chronic lung disease. A preponderance of epidemiologic and clinical evidence, however, indicates that both pre- and post-natal exposure to dexamethasone can result in an increased risk for cerebral palsy, decreased brain size, and long-term effects on cognition and behavior (reviewed in Baud 2004; Purdy, 2004; Purdy and Wiley, 2004; Sloboda et al., 2005).